USN

NEW SCHEME

Fourth Semester B.E. Degree Examination, Dec. 06 / Jan. 07 **Electrical and Electronics Engineering**

Control Systems

Time: 3 hrs.]

[Max. Marks:100

Note: Answer any FIVE full questions.

- a. Explain the difference between open loop and closed loop control systems, with 1 suitable examples.
 - b. For the mechanical system shown in the fig1(b), draw the force-voltage analogous electrical system and determine the displacements as function of time at A & B; also draw approximately these displacements. The applied force is a unit impulse. (12 Marks)

$$F(t) = \delta(t) N.$$

$$M_2 = 24 \text{ kgms}$$

$$l_1 = 100 \text{ cms}$$

$$M_1 = 4 \text{ kgms}$$

 $D_1 = 5 \text{ N} / \text{m} / \text{sec}$

$$D_2 = 60 \text{ N/m/sec}$$

$$l_2 = 25 \text{ cms}$$

$$D_1 = 5 \text{ N/m/scc}$$
 $K_2 = 1.25 \text{ cms/N}$

a. For a negative feedback control system, starting from fundamentals, show that the 2 closed loop transfer function M(s) is given by

$$M(s) = {N_s D_h \choose D_s D_h + N_s N_h}$$
, where $G(s) = {N_s \choose D_z}$; $H(s) = {N_h \choose D_h}$

b. The performance equations of a controlled system are given by the following set of linear algebraic equations. Draw the block diagram and determine $\frac{C(s)}{R(s)}$ by reducing

the block diagram in steps.

$$E_1(s) = R(s) - H_3(s) C(s)$$

$$E_2(s) = E_1(s) - H_1(s) E_4(s)$$

$$E_3(s) = G_1(s) E_2(s) - H_2(s) C(s)$$

$$E_4(s) = G_2(s) E_3(s)$$

$$C(s) = G_3(s) E_4(s)$$

(12 Marks)

a. For the circuit shown in the Fig.3(a), write the performance equations considering the voltage and current variables as indicated, draw the corresponding signal flow graph and determine $I_3(s)$ $V_1(s)$ using Mason's Gain formula. (14 Marks)

Fig.3(a)

$$R_1 = 100k\Omega$$
; $R_2 = 50k\Omega$; $R_3 = 40k\Omega$; $C_1 = 10\mu F$; $C_2 = 5\mu F$

- b. Briefly explain the following with examples:
 - i) Part of signal flow graph not touching a forward path.
 - ii) Mixed Node.
- 4 a. What are impulse and step signals? How are they defined mathematically? What are their Lap lace Transformations? (06 Marks)
 - b. Starting from fundamentals, derive an expression for the step response of a typical under damped second order closed loop control system. Show the typical variation of the response and mark the settling time on a 5% tolerance basis. (14 Marks)

(06 Marks)

- 5 a. What are static error co-efficients? Derive expressions for the same. (08 Marks)
 - A negative feedback control system has

$$G(s) = \frac{K}{s(s^2 + s + 1)}$$
 and $H(s) = \frac{1}{s + 4}$

Determine the range of k for the absolute stability of the system; also determine the frequency of sustained self oscillations for the limiting value of k. (12 Marks)

- a. State the rules for the construction of Root Loci of the characteristic equation of a feedback control system. (06 Marks)
 - b. For a negative feedback control system,

$$G(s) = \frac{k}{s(s^2 + 4s + 13)}$$
 and $H(s) = \frac{1}{(s+4)}$

Obtain the root locus for the root of the characteristic equation and plot the same using a scale of 1 unit of Real s = 2 cm and 1 unit of Imaginary s = 2 cm. (14 Marks)

- a. For a closed loop control system, $G(s) = \frac{100}{s(s+8)}$, H (s) = 1. Determine the Resonant Peak and Resonant Frequency. (06 Marks)
 - b. A negative feedback control system has $G(s) = \frac{K}{(s+1)(s+4)}$ and $H(s) = \frac{1}{s}$ Obtain the complete Nyquist plot (G H Locus) and discuss the stability of the system (with respect to the variable parameter k). (14 Marks)
- 8 a. Show that for a unity feedback control system with $G(s) = \frac{K}{s(s+a)(s+b)}$, $G(jw_c) = \frac{-K}{ab(a+b)}$, where 'W_c' is the phase cross over frequency. (06 Marks)
 - b. Given $G(s) = \frac{80000}{s(s+2)(s+50)(s+200)}$ for a unity feedback control system, draw the Bode Plots and hence determine the Phase Margin and Gain Margin.

 (14 Marks)